Biomass pretreatment: a critical choice for biomass utilization via biotechnological routes

نویسندگان

  • Ricardo SS Teixeira
  • Ayla S Silva
  • Rondinele O Moutta
  • Viridiana S Ferreira-Leitão
  • Rodrigo RO Barros
  • Maria Antonieta Ferrara
  • Elba PS Bon
چکیده

Introduction The necessary biomass pretreatment step, to render the material accessible to the relevant enzyme pool, has been under thorough investigation as the production of biomass syrups, via enzymatic hydrolysis, with high sugars concentrations and yields and low inhibitors concentrations requires the pretreatment to be both efficient and low cost. A good choice for biomass pretreatment should be made by considering: (i) the possibility to use high biomass concentration; (ii) a highly digestible pretreated solid by either increasing the biomass superficial area or decrease in crystallinity or both; (iii) no significant sugar degradation into toxic compounds; (iv) yeast and bacterial fermentation compatibility of the derived sugar syrups; (v) lignin recovery; (vi) operation in reasonably sized and moderately priced reactors and (vii) minimum heat and power requirements [1]. Considering the most known pretreatments, such as diluted acid, hydrothermal processes, steam explosion, milling, extrusion, and ionic liquids, different pretreatment methods produce different effects on the biomass in terms of its structure and composition [2]. For example, the hydrothermal, steam explosion and acidic pretreatments conceptually remove mainly the biomass hemicellulose fraction whereas alkaline pretreatments remove lignin. On the other hand the product of a milling-based pretreatment retains the biomass initial composition. Furthermore, cellulose crystallinity is not significantly reduced by pretreatments based on steam, or hydrothermal, or acidic procedures, whereas ionic liquid-based techniques can shift crystalline cellulose into amorphous cellulose, substantially increasing the enzymatic hydrolysis rates and yields. As such, the choice of pretreatment and its operational conditions as well as the composition of the enzyme blend used in the hydrolysis step, determines the hexose and pentose sugars composition, the concentration and toxicity of the resulting biomass syrups. The activity profile of the enzyme blend and the enzyme load for an effective saccharification may also vary according to the pretreatment. Indeed, a low hemicellulase load can be used for a xylan-free biomass and a lower cellulase load will be needed for the hydrolysis of a low crystalline and highly amorphous pretreated biomass material. As the pretreatment choice will also be affected by the type of biomass, the envisaged biorefinery model will need to consider the main types of biomass that will be used for the biorefinery operation so as to select an appropriate, and versatile pretreatment method [3]. Considering the biorrefinery concept which broadens the biomass derived products, the C6 sugars could be fermented into ethanol, while the C5 stream could be used for the production, via biotechnological routes, of a wide range of chemicals with higher added value. To date, sugarcane and woody biomass, depending on the geographic location, are strong candidates as the main renewable resources to be fed into a biorefinery. However, due to major differences regarding their physical properties and chemical composition, the relevant pretreatments to be used in each case are expected to be selective and customized. Moreover, a necessary conditioning step for wood size reduction, prior to the pretreatment, may not be necessary for sugarcane bagasse, affecting the pretreatment energy consumption and costs. Moreover, the choice of pretreatment should take into account the foreseen utilization of the main biomass molecular components (cellulose, hemicelluloses and lignin). It is important to point out that lignin can be used as a valuable solid fuel or as a source of aromatic structures for the chemical industry. Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Av. Athos da Silveira Ramos, 149 Ilha do Fundão, Rio de Janeiro, RJ CEP: 21941-909, Brazil Full list of author information is available at the end of the article Teixeira et al. BMC Proceedings 2014, 8(Suppl 4):O34 http://www.biomedcentral.com/1753-6561/8/S4/O34

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilization of Algal Consortium to Produce Biofuels and Byproducts For Reducing Pollution load

Algal biorefinery process utilizes every component of algal biomass to produce multiple useful fuel products. In this technique, acid pretreatment of algal biomass hydrolyzes microalgal carbohydrates into fermentable sugars, makes lipids more extractable and a protein part accessible for additional products. In the present study, Chlorella sorkiniana produced higher quantity of biodiesel than B...

متن کامل

Utilization of Algal Consortium to Produce Biofuels and Byproducts For Reducing Pollution load

Algal biorefinery process utilizes every component of algal biomass to produce multiple useful fuel products. In this technique, acid pretreatment of algal biomass hydrolyzes microalgal carbohydrates into fermentable sugars, makes lipids more extractable and a protein part accessible for additional products. In the present study, Chlorella sorkiniana produced higher quantity of biodiesel than B...

متن کامل

Logistics and pretreatment of forest biomass

In large regions of the world, biomass is a very important source of energy. The global bioenergy market based on forest biomass is growing rapidly. About 92 % of the bioenergy in Sweden comes from forests. Biomass from forests is not homogenous. The locations, transport distances, and transport methods, can differ very much and the industries that need biomass as input prefer raw materials wit...

متن کامل

Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work

Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian  peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to ...

متن کامل

Fractionating Pretreatment of Lignocellulosic Biomass as an Entry into Biomass Refining

Lignocellulose, mostly existing in the form of plant materials, is one of the most abundant organic materials in natural world. It has been estimated that there is an annual worldwide production of 10–50 billion tons of dry lignocellulose, accounting for about half of the global biomass yield . In recent years, due to the escalating energy crisis and environmental pollutions, more extensive att...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014